

FEATURE

- AEC-Q200 qualified.
- High accuracy up to ±0.05%.
- Narrow TCR to ±5PPM/°C.
- Total lead-free without RoHS exemptions(7C-1).
- High reliability and stability.
- High rated power capability.
- RoHS complaint.
- Applications:
 - Automotive Electronics
 - Electric door and window, electric seat control unit
 - Reversing radar
 - Automotive lighting control unit
 - Medical devices
 - Industrial control system
 - etc.

MANUFACTURER PART NO.

For example: AQ0805B100RT5K25 - AQ0805 ±0.1% 100Ω T/R-5000 1/4W 25PPM/°C

1 01 0/(dillipio)	<u>NQ0000B100INIONE0</u>	11200	00 10.1/0 10032 1/10 0	<u> </u>		, <u> </u>	
Series	Size	Tol.	Nominal Resistance Value	PKG	SPQ	Power	TCR
2 codes	4 codes	1 code	2~5 codes	1 code	1 code	1 code	2 codes
AQ	0805	D	49K9	Т	5	К	25
Automotive Grade Thin Film High Accuracy Chip Resistors	0402 0603 0805 1206 1210 2010 2512	A=0.05% B=0.1% C=0.25% D=0.5% F=1%	1R ⁺ =1Ω 4R7=4.7Ω 4K7=4.7KΩ 100K ² =100KΩ 3M ³ =3MΩ	T=T/R [®]	4=4К 5=5К А=10К	C=1/16W D=1/10W E=1/8W J=1/5W K=1/4W L=1/3W N=1/2W P=3/4W	05=5PPM/°C 10=10PPM/°C 25=25PPM/°C 50=50PPM/°C 00=Refer to table as below.

Note: (1) R=Radix, 10^o, Ω .

④ T/R=Taping in Reel package type.

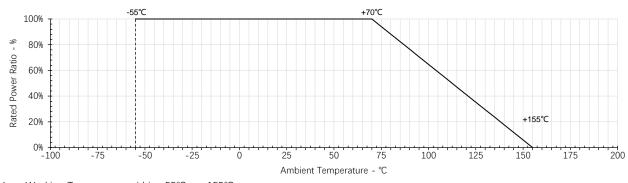
② K=Kilo, 10³, KΩ.
⑤ P.C.: Personal and Customized.

③ M=Mega, 10⁶, MΩ.

CHARACTERISTICS

Turoo	Rated Power	MWV ^①	MOV ²	TCR(PPM/°C)		Resistance Range	
Туре	Kaleu Fower		IVIO V	ICK(FFIVI/C)	±0.05%	±0.1%, ±0.25%	±0.5%, ±1%
				±5	100Ω-2ΚΩ	100Ω-2ΚΩ	100Ω-2ΚΩ
AQ0402	1/10W	50V	100V	±10	10Ω-12ΚΩ	10Ω-12ΚΩ	10Ω-12ΚΩ
				±25, ±50	10Ω-330ΚΩ	10Ω-330ΚΩ	10Ω-330ΚΩ
				±5	100Ω-4ΚΩ	100Ω-4ΚΩ	100Ω-4ΚΩ
AQ0603	1/5W	150V	300V	±10	10Ω-50ΚΩ	10Ω-50ΚΩ	10Ω-50ΚΩ
				±25, ±50	10Ω-1ΜΩ	1Ω-1ΜΩ	1Ω-1ΜΩ
				±5	100Ω-15ΚΩ	100Ω-15ΚΩ	100Ω-15ΚΩ
AQ0805	1/4W	200V	400V	±10	10Ω-100ΚΩ	10Ω-100ΚΩ	10Ω-100ΚΩ
				±25, ±50	4.7Ω-511ΚΩ	1Ω-2ΜΩ	1Ω-2ΜΩ
				±5	100Ω-15ΚΩ	100Ω-15ΚΩ	100Ω-15ΚΩ
AQ1206	1/2W	200V	400V	±10	10Ω-200ΚΩ	10Ω-200ΚΩ	10Ω-200ΚΩ
				±25, ±50	4.7Ω-1ΜΩ	1Ω-3ΜΩ	1Ω-3ΜΩ
				±5	100Ω-15ΚΩ	100Ω-15ΚΩ	100Ω-15ΚΩ
AQ1210	1/2W	200V	400V	±10	10Ω-200ΚΩ	10Ω-200ΚΩ	10Ω-200ΚΩ
				±25, ±50	4.7Ω-1ΜΩ	1Ω-3ΜΩ	1Ω-3ΜΩ
				±5	100Ω-25ΚΩ	100Ω-25ΚΩ	100Ω-25ΚΩ
AQ2010	3/4W	200V	400V	±10	10Ω-200ΚΩ	10Ω-200ΚΩ	10Ω-200ΚΩ
				±25, ±50	4.7Ω-3ΜΩ	1Ω-3ΜΩ	1Ω-3ΜΩ
				±5	100Ω-25ΚΩ	100Ω-25ΚΩ	100Ω-25ΚΩ
AQ2512	1W	200V	400V	±10	10Ω-200ΚΩ	10Ω-200ΚΩ	10Ω-200ΚΩ
				±25, ±50	4.7Ω-3ΜΩ	1Ω-3ΜΩ	1Ω-3ΜΩ

Note: ① MWV=Max. Working Voltage;


This document is subject to change without notice. The products described herein, and this document are subject to specific disclaimers, set forth at GiantOhm official website, http://www.giantohm.com/download/cid/22.html

² MOV=Max. Overload Voltage.

AQ Series Automotive Grade High Power Thin Film Chip Resistors Version. B

POWER DERATING CURVE

Note: Working Temperature within -55°C \sim +155°C.

RATED VOLTAGE

Resistors should have a Rated Voltage DC or AC corresponding to Rated Power which can be calculated by formula as below.

The Rated Voltage of certain resistance value should be the calculated result or Max. Working Voltage of product series whichever lower.

$$E = \sqrt{P \times R}$$

E=Rated voltage(V) P=Rated power(W) R=Nominal resistance(Ω)

						Unit: mm
Figure	Туре	L	W	Н	A	В
	AQ0402	1.00±0.10	0.45±0.10	0.30±0.05	0.20±0.10	0.25±0.10
	AQ0603	1.50±0.10	0.80±0.10	0.45±0.10	0.30±0.15	0.30±0.15
	AQ0805	1.95±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.15
1000	AQ1206	3.05±0.10	1.50±0.10	0.50±0.10	0.45±0.20	0.35±0.15
1003	AQ1210	3.05±0.10	2.55±0.10	0.55±0.10	0.50±0.20	0.50±0.20
	AQ2010	5.00±0.20	2.50±0.20	0.55±0.10	0.60±0.20	0.60±0.20
	AQ2512	6.30±0.20	3.20±0.20	0.55±0.10	0.60±0.20	0.60±0.20

DIMENSIONS

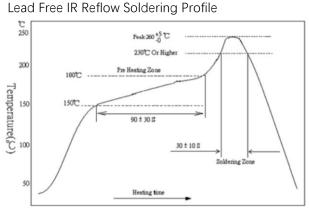
RELIABILITY

ltem	Test Method	Acceptable Criterion
High	Put the specimens unpowered in test environment at +155°C for 1,000 hours, then take	
Temperature	them out to measure the resistance value change rate.	$\triangle R/R=\pm 0.2\%$
Exposure	Reference: AEC-Q200 Test 3, MIL-STD-202 Method 108	
	Put the specimens in test environment, rise temperature from -55°C to +125°C with	
Tananaratura	speed 10~20 °C per minutes, then stabilize for 15 minutes, define these steps as a	
Temperature Cycling	cycles, totally 1000 cycles. Finally, take them out to measure the resistance value change	$\triangle R/R=\pm 0.2\%$
Cycling	rate.	
	Reference: AEC-Q200 Test 4, JESD22 Method JA-104	
	Put the specimens applied 10% of rated power in test environment at 85°C and 85%RH	
Biased Humidity	for 1000 hours. then take them out to stabilize for 24 hours and measure resistance	$\Delta R/R = +0.2\%$
biased murnituity	value change rate.	$\Delta K/K = \pm 0.2\%$
	Reference: AEC-Q200 TEST 7, MIL-STD-202 Method 103	
	Put the specimens in isopropanol solvent at room temperature 23±5°C for 5 minutes,	
Resistance to	brush 10 times as a group with a hard toothbrush, 3 times for each group. Then take	No visible damage
Solvent	them out to blow dry, and check their appearance.	NU VISIDIE Uditidye
	Reference: AEC-Q200 Test 12, MIL-STD-202 Method 215	

Automotive Grade High Power Thin Film Chip Resistors - AQ Series

AQ Series Automotive Grade High Power Thin Film Chip Resistors

Version. B


Version. B		
ltem	Test Method	Acceptable Criterion
	Condition D Steady State T_A =+125°C.	
	Put the specimens applied rated voltage in test environment, the maximum rated	
Operational Life	temperature and rated voltage for the dielectric employed shall be used. Set up 90	$\triangle R/R=\pm 0.2\%$
Operational Life	minutes power on and 30 minutes power off as a group, totally 1000 hours. Then take	$\Delta N/N = \pm 0.2\%$
	them out to stabilize for 24±4 hours and measure the resistance value change rate.	
	Reference: AEC-Q200 Test 8, MIL-STD -202 Method 108	
Resistance to	Put the specimens in tin furnace at 260^{+5}_{-0} °C for 10^{+1}_{-0} seconds. Then take them out to	
Soldering Heat	stabilize for 1 hour, and measure the resistance value change rate. Reference: AEC-Q200 TEST 15, MIL-STD-202 Method 210	$\triangle R/R=\pm 0.1\%$
	Put the specimens with voltage in test machine, and the voltage shall be set up as	
	following table.	
	Test method: Electro-Static discharges twice which positive and negative polarity once	
ESD	each by human body mode.	$\Delta R/R=\pm 0.5\%$
	Size 0402, 0603 0805 and above Voltage 1,000V 2,000V	
	Reference: AEC-Q200 Test 17, AEC-Q200-002	
	Pretreatment:	1. Solder coverage
	Dry heat +155°C for 4 hours, or with equivalent test method, PCT aging for 4 hours.	must be 95%
	Then take the specimens out to stabilize at room temperature for 2 hours.	minimum.
Solderability	Test method:	2. Without welding rejection. And
	1. Put the specimens in a tin furnace at 245±3°C for 3 seconds, then take them out and check the soldering appearance by microscope.	soldering is higher
	2. Reflow soldering test with peak temperature 235°C for 40± 5 seconds.	than 1/2 of side
	Reference: AEC-Q200 Test 18, J-STD-002, IEC 60115-1 11.1.4.3	termination height.
	$\text{TCR}(\text{ppm/°C}) = \frac{(R_2 - R_1)}{R_1 \times (T_2 - T_1)} \times 10^6$	
	R_1 : Resistance value at room temperature (Ω)	
Electrical	R_2 : Resistance value at test temperature -55°C or +125°C	Details in table
Characterization	T_1 : Temperature at room temperature (°C)	CHARACTERISTICS
	T_2 : Temperature at -55°C or +125°C	
	Reference: AEC-Q200 Test 19, IEC 60115-1 6.2	
	Put PCBA mounted with the specimens in test machine, press down the PCBA to	
	standard depth with testing block and stabilize for 60 seconds, then measure the	
Board Flex	resistance value change rate.	$\triangle R/R=\pm 0.1\%$
	Size 0402, 0603, 0805 1206, 1210 2010, 2512 Depth 5mm 3mm 2mm	
	Reference: AEC-Q200 TEST 21, AEC-Q200-005	
	Apply 1.8Kgf external force on the side of specimen, then check the soldering joint	
Terminal	strength.	No mechanical damage
Strength	Size 0402 0603 and above Force 1 Kgf. 1.8 Kgf.	or peel-off of side end
otterigti		
	Reference: AEC Q200-005	
Short Time	Load 2.5 times of rated voltage or maximum overload voltage whichever is less for 5 seconds. Then measure the resistance value change rate.	
Overload	Reference: IEC 60115-1 8.1.4.2	$\triangle R/R=\pm 0.1\%$
Mechanical	Put the specimens in test machine, shocks with half sine wave which acceleration set up as 100g's and each three times in X, Y and Z directions with pulse duration as 6 ms.	
shock	-	\triangle R/R=±0.1%
	Reference: AEC-Q200 Test 13, MIL-STD -202 Method 213	
	Put the specimens in test machine, vibrates with 10 to 20Hz frequency which	
Vibration	acceleration set up as 5g's, and each 12 times in X, Y and Z directions as a cycle which duration as 20 minutes, totally 36 cycles.	$\triangle R/R=\pm 0.1\%$
	Reference: AEC-Q200 Test 14, MIL-STD -202 Method 204	
	-	V-0
	Put the specimens in test environment, and burn them for 10 seconds and the flame	Specimens haven't
Flammability	extinguished within 60 seconds.	burn, and the bottom
	Reference: AEC-Q200 Test 20, UL-94	cotton without flame.
	Put the specimens mounted on PCB and subjected to voltage from 9.0 to 32.0 VDC	1. A flame duration
	(current clamped up to 500A) in 1.0 VDC increments. Each voltage level shall be applied	less than 3.0 seconds.
Flame retardancy	for one hour minimum, or until the specimens is either electrically open of a failure	2. Without explosion
,	occurs.	A temperature above
	Reference: AEC-Q200 Test 24, AEC-Q200-001	350°C sustained for
		less than 10 seconds

This document is subject to change without notice. The products described herein, and this document are subject to specific disclaimers,
set forth at GiantOhm official website, http://www.giantohm.com/download/cid/22.htmlQA-SP-015Automotive Grade High Power Thin Film Chip Resistors - AQ SeriesPage 3 /

AQ Series Automotive Grade High Power Thin Film Chip Resistors Version. B SOLDERING

JOEDERING

- Top temperature should be under 260^{+5}_{-0} °C for 10 sec.
- Reference: J-STD-020D

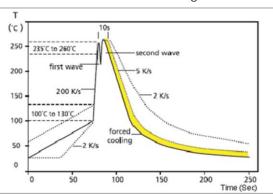
SOLDERING PAD

C

Unit: mm В Туре С AQ0402 0.5 1.5 0.6 AQ0603 0.8 2.1 0.9 AQ0805 1.2 3.0 1.3 AQ1206 2.2 4.2 1.6 2.2 4.2 2.8 AQ1210 AQ2010 3.5 6.1 2.8 AQ2512 3.8 8.0 3.5

WORKING ENVIRONMENT

If user intends to use products in special environments or states (including but not limited to the following), it is necessary to approve special characteristics and reliability for the following or other application environments.


- A. High temperature.
- B. Near the sea, or corrosive gas, such as Cl_2 , H_2S , NH_3 , SO_2 and NO_2 , etc.
- C. Unverified liquids, such as water, oil, chemical or organic solvent.
- D. Unverified resin or paint to cover products.
- E. Products should be washed with water soluble cleaner even if non cleaning flux.

STORAGE / CARRY CONDITIONS

- A. Temperature: 25±5℃
- B. Humidity: 60±15%RH
- C. Storage life: 2 years. FIFO
- D. Please hold box correct orientation when storing and carrying. It is strictly prohibited to fall or squeeze the box, otherwise the product electrode or body may be damaged.

This document is subject to change without notice. The products described herein, and this document are subject to specific disclaimers, set forth at GiantOhm official website, http://www.giantohm.com/download/cid/22.html

Lead Free Double-Wave Soldering Profile

- Suitable for 0603 above size products
- 350±10°C for 3 sec. by soldering iron.

LEGAL DISCLAIMER

GiantOhm and its distributors or agents (hereinafter referred to as GiantOhm) shall not bear any responsibility for any error, inaccuracy or incompleteness contained in any product related information (including but not limited to product specifications, data, pictures, and charts). GiantOhm may change, revise, or improve product related information at any time without prior notice.

GiantOhm makes no commitment, guarantee for the suitability of its products for special purposes or the continuous production of any of its products. To the maximum extent permitted by law, GiantOhm does not assume any of the following responsibilities:

- Α. All liabilities arising from the application or use of any GiantOhm's products.
- Β. All liabilities, including but not limited to the loss of profits or direct damage, indirect damage, special damage, punitive damage, derivative damage, or incidental damage caused by or related to GiantOhm's products.
- C. All implied warranties, including fitness for a particular purpose, non-infringement, and merchantability.

GiantOhm defines this product as a general consumer electronic purpose, which is not applicable to any medical lifesaving or life-sustaining equipment, nor to any application that may cause casualties in case of failure of GiantOhm's products.

All technical suggestions on product application provided by GiantOhm are provided free of charge. GiantOhm assumes no obligation and responsibility for adopting such technical suggestions and available results, and all risks of adopting such suggestions shall be borne by the buyer. All risks and responsibilities arising from the buyer's use of GiantOhm's products in combination with other materials or raw materials, or in any combination in its manufacturing process, shall be borne by the buyer, regardless of any oral or written technical instructions, suggestions or other requirements given by GiantOhm for the use of the products.

The information provided above is only to explain the product specifications. If the product is not changed, GiantOhm has all the rights to modify the above contents without prior notice, and the product change will be notified to the customer by ECN.

This document is subject to change without notice. The products described herein, and this document are subject to specific disclaimers, set forth at GiantOhm official website, http://www.giantohm.com/download/cid/22.html

AQ Series

Automotive Grade High Power Thin Film Chip Resistors Version. B

VERSION HISTORY

Version	Date	Change Item(s)	Description	
	2022/04/25	-	First version	
	2022/12/09	Characteristics	Update items	
	<u> </u>			
		. <u>.</u>		
	<u> </u>			

This document is subject to change without notice. The products described herein, and this document are subject to specific disclaimers,
set forth at GiantOhm official website, http://www.giantohm.com/download/cid/22.htmlQA-SP-015Automotive Grade High Power Thin Film Chip Resistors - AQ SeriesPage 6 /