

FEATURE

- Tiny and light with thick film technology.
- High reliability.
- Non-magnetic.
- RoHS complaint.
- Compatible with Reflow and Wave soldering type.
- Applications:
 - Medical devices.
 - Instruments and meters.
 - etc.

MANUFACTURER PART NO.

For example: MR1206J100KT5G00-MR1206 ±5% 100KΩ T/R-5000

Series	Size	Tol.	Nominal Resistance Value	PKG	SPQ	Feature	TCR
2 codes	4 codes	1 code	2~5 codes	1 code	1 code	1 code	2 codes
MR	1206	F	100K	Т	5	G	00
Non-Magnetic Thick Film Chip Resistors	0201 0402 0603 0805 1206 1210 2010 2512	D=±0.5% F=±1% J=±5%	1R ³ =1Ω 4R7=4.7Ω 4K7 ² =4.7KΩ 100K=100KΩ 4M7 ³ =4.7MΩ 22M=22MΩ	T=T/R ⁴	4=4K 5=5K A=10K B=15K	G=Std. S=P.C.®	00=Refer to table as below.

Note: (1) R=Radix, 10^{0} , Ω

④ T/R=Taping in Reel Package.

(2) K=Kilo, 10^3 , K Ω

③ M=Mega, 10⁶, M Ω

⑤ P.C.=Personal and Customized.

CHARACTERISTICS

Sorios	Pated Dowor				lumpor MDC ⁴	lumper MOC ⁵	Resistance Value Range		
Jenes	Kaleu FOwer				Jumper Mike		±0.5%	±1%, ±5%	Jumper
MR0201	1/20W	25V	50V	-	0.5A	1A	-	1Ω-10ΜΩ	< 50mΩ
MR0402	1/16W	50V	100V	100V	1A	2A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ
MR0603	1/10W	75V	150V	300V	1A	2A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ
MR0805	1/8W	150V	300V	500V	2A	5A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ
MR1206	1/4W	200V	400V	500V	2A	10A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ
MR1210	1/2W	200V	500V	500V	2A	10A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ
MR2010	3/4W	200V	500V	500V	2A	10A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ
MR2512	1W	200V	500V	500V	2A	10A	1Ω-10ΜΩ	1Ω-22ΜΩ	< 50mΩ

Note: ① MWV=Max. Working Voltage. ④ MRC=Max. Rated Current 2 MOV=Max. Overload Voltage.

3 DWV=Dielectric Withstanding Voltage

(5) MOC=Max. Overload Current

POWER DERATING CURVE

Note: Operating temperature range is from -55°C to +155°C

RATED VOLTAGE

Resistors should have a Rated Voltage DC or AC corresponding to Rated Power which can be calculated by formula as below.

The Rated Voltage of certain resistance value should be the calculated result or Max. Working Voltage of product series whichever less.

Formula:

$$E = \sqrt{P \times R}$$

E=Rated voltage(V) P=Rated power(W) R=Nominal resistance(Ω)

DIMENSIONS

Unit: mm

Figure	Туре	L	W	Н	A	В
	MR0201	0.60±0.03	0.30±0.03	0.23±0.03	0.10±0.05	0.15±0.05
IH I	MR0402	1.00 ± 0.10	0.50 ± 0.05	0.35±0.05	0.20±0.10	0.25±0.10
В	MR0603	1.60 ± 0.10	0.80±0.10	0.45±0.10	0.30±0.20	0.30±0.20
• -	MR0805	2.00±0.15	1.25±0.15	0.55±0.10	0.40±0.20	0.40±0.20
	MR1206	3.10±0.15	1.55 ± 0.15	0.55±0.10	0.45±0.20	0.45±0.20
w	MR1210	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20
	MR2010	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20
.	MR2512	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20

RELIABILITY

ltem	Test Method	Acceptable criterion
Temperature Coefficient of Resistance (T.C.R.)	$TCR(PPM/^{\circ}C) = \frac{(R_2 - R_1)}{R_1 \times (T_2 - T_1)} \times 10^6$ R_1=Value in room temperature R_2=Value in test temperature -55^{\circ}C or +125^{\circ}C T_1=Room temperature T_2=Test temperature -55^{\circ}C or +125^{\circ}C Reference: IEC 60115-1 6.2	MR0201: 1Ω≤R≤10Ω: -100~+350PPM/°C >10Ω: ±200PPM/°C MR0402~2512: 1Ω≤R≤10Ω: ±200PPM/°C >10Ω: ±100PPM/°C
Insulation Resistance	Using the parallel clamp method: 100±15V _{DC} voltage is applied between the electrode and the substrate within 60 seconds. Test the insulation resistance between the terminal and the back of the part. Reference: IEC 60115-1 12.1.3.5	≥ 10 ⁹ Ω

ltem	Test Method	Acceptable criterion	
	An alternating current with an effective value of the maximum overload voltage		
Dielectric	is applied between the electrode and the substrate at a rate of approximately	Test to confirm if the presence of	
Withstanding	100V/sec. Pressure, maintain 60 ± 5 sec. The test voltage reference to the DWV	current or arc breakdown by	
Voltage	in characteristics.	≥10uA	
	Reference: IEC 60115-1 12.2.4		
Short Time	Apply 2.5 times of rated voltage or maximum overload voltage (whichever is	1% series: $\triangle R/R = +1.0\%$	
Over Load	the smallest) for 5 seconds	5% series: $\triangle R/R=\pm 2.0\%$	
	Reference: IEC 60115-1 8.1.4.2		
Intermittent	Put it in the thermostal, apply 2.5 times of rated voltage, 1 second ON, 25 seconds OFF 10000^{+400} cycles take it out and stand for 60 minutes then		
Overload	measure the change rate of resistance value.	$\triangle R/R=\pm 5.0\%$	
eveneda	Reference: IEC 60115-1 8.4.4		
	Immerse in isopropanol solvent at room temperature (23±5°C) for 5min, wipe		
Resistance to	10 times with a hard toothbrush, repeat 3 times, take out and blow dry for	No obvious damage, peeling,	
Solvent	examination	swelling phenomenon	
	Reference: IEC 60115-1 11.3.2 method1		
	Pretreatment:		
	at room temperature for 2 hrs	1. Solder coverage over 95%	
	Test method	2. No welding refusal	
Solderability	1. Dip the resistance in a tin furnace at $245\pm3^{\circ}$ C for 3 seconds, then take it out	phenomenon, side soldering	
	and observe the solder area under a microscope;	height is greater than 1/2 of the	
	2. Reflow soldering test, Peak Temperature: 235°C, T=40±5 sec.		
	Reference: IEC 60115-1 11.1.4.3		
	Pretreatment:		
	dry heat 155°C, 4 hrs. or PCT aging for 4 hrs. (equivalent), after take out, stand	No electrode is creded to evolute	
Leaching	at room temperature for 2 nrs. din in a tin furnace at 260^{+5} °C for 30^{+1} seconds, remove and wash. Observe	No electrode is eroded to expose the substrate phenomenon	
	the area of solder under a microscope		
	Reference: IEC-60068-2-58		
	The tested resistor be immersed into molten solder of 260^{+5}_{-0} °C for 10 seconds.		
Resistance to	Then the resistor is left in the room for 1 hr., then measure the change rate of	$\triangle R/R = +1.0\%$	
Soldering Heat	resistance value		
	Reference: IEC 60115-1 11.2.4.3		
	limits of the application temperature of the parts, the residence time of the		
Thermal Shock	upper and lower limits of the temperature is 30min, and the temperature	$\triangle R/R=\pm 1.0\%$	
	conversion time is less than 30s, lasting 500 cycles		
	Reference: IEC 60115-1 10.1.4		
	The SMD resistance was welded to the test board and bent with the standard		
	pressure block. After standing for 60 sec. under the corresponding deformation		
Solder Joint	condition, the change rate of resistance value of the part was tested.	$\triangle R/R=\pm 1.0\%$	
Endurance Test	Size 0402, 0603, 0805 0201, 1200, 1210 2010, 2312 Dopth 5mm 2mm 2mm		
	Reference: IEC. 60115-1.9.8.4		
	Put it in an oven at $155+5^{\circ}$ for 1000^{+48} hrs. take it out and let it stand for		
Resistance to	more than 1hr., then measure the change rate of resistance value	1% series: $\triangle R/R = \pm 1.0\%$	
Dry Heat	Reference: IEC 60115-1 7.3	5% series: $\triangle R/R = \pm 3.0\%$	
	Place it in a constant temperature and humidity box with 40±2°C and		
Loading Life in	90~95%RH and apply the rated voltage with 90 minutes ON and 30 minutes	1% series: $A R/R = +1.0\%$	
Moisture	OFF, 1000 hrs. Take it out and stand for 60 minutes, and then measure the	5% series: $\triangle R/R = \pm 3.0\%$	
	change rate		
	Reference: IEC 60115-1 10.4		
	Fut in an oven at 70 ± 2 C, apply fated voltage, so min ON, so min OFF, 1000	1% series: $A R/R = +1.0\%$	
Load Life	change rate.	5% series: $\triangle R/R = \pm 3.0\%$	
	Reference: IEC 60115-1 7.1		
	-55°C, unpowered, 1 hr.: Rated voltage/current for 45 minutes, then	1	
Low	unpowered within 15 minutes, return to room temperature, take out and stand	1% series: $\triangle R/R=\pm 1.0\%$	
load test	for 24 hours, then measure the change rate of resistance value.	5% series: $\triangle R/R=\pm 2.0\%$	
idau test	Reference: IEC 60115-1 10.2.4		

ltem	Test Method					Acceptable criterion		
Shear force	Weld the part to the PCB. Apply the corresponding test stress from the side of the part with the test terminal for 10s. Check the appearance of the welded end of the part under the stress condition					Without obvious damage		
test	Size 0201	0402, 0603	0805	1206, 1210	2010, 2512	without obvious damage.		
	Test force 2N	5N	9N	25N	45N			
	Reference: IEC 60115-1 9.7							

SOLDERING TEMPERATURE

SOLDERING PAD

Resistance value would be lower than nominal value because of joint with soldering material, so designing circuit should adjust the pad size

				01110111
	Туре	А	В	С
	MR0201	0.3	1.0	0.4
С	MR0402	0.5	1.5	0.6
	MR0603	0.8	2.1	0.9
	MR0805	1.2	3.0	1.3
— <u> </u>	MR1206	2.2	4.2	1.6
	MR1210	2.2	4.2	2.8
В	MR2010	3.5	6.1	2.8
	MR2512	3.8	80	35

WORKING ENVIRONMENT

If user intends to use products in special environments or states (including but not limited to the following), it is necessary to approve special characteristics and reliability for the following or other application environments.

- A. High temperature, high moisture.
- B. Near the sea, or corrosive gas, such as Cl_2 , H_2S , NH_3 , SO_2 and NO_2 , etc.
- C. Unverified liquids, such as water, oil, chemical or organic solvent.
- D. Unverified resin or paint to cover products.
- E. Products should be washed with water soluble cleaner even if non cleaning flux.

I Init[.] mm

This document is subject to change without notice. The products described herein, and this document are subject to specific disclaimers, set forth at GiantOhm official website, http://www.giantohm.com/download/cid/22.html

MR Series Non-Magnetic Thick Film Chip Resistors Version. A STORAGE / CARRY CONDITIONS

A. Temperature: 25±5°C

- B. Humidity: 60±15%RH
- C. Storage life: 0201 size: 1 year; ≥0402 size: 2 years. FIFO.
- D. Please hold box correct orientation when storing and carrying. It is strictly prohibited to fall or squeeze the box, otherwise the product electrode or body may be damaged.

LEGAL DISCLAIMER

GiantOhm and its distributors or agents (hereinafter referred to as GiantOhm) shall not bear any responsibility for any error, inaccuracy or incompleteness contained in any product related information (including but not limited to product specifications, data, pictures, and charts). GiantOhm may change, revise, or improve product related information at any time without prior notice.

GiantOhm makes no commitment, guarantee for the suitability of its products for special purposes or the continuous production of any of its products. To the maximum extent permitted by law, GiantOhm does not assume any of the following responsibilities:

- A. All liabilities arising from the application or use of any GiantOhm's products.
- B. All liabilities, including but not limited to the loss of profits or direct damage, indirect damage, special damage, punitive damage, derivative damage, or incidental damage caused by or related to GiantOhm's products.
- C. All implied warranties, including fitness for a particular purpose, non-infringement, and merchantability.

GiantOhm defines this product as a general consumer electronic purpose, which is not applicable to any medical lifesaving or life-sustaining equipment, nor to any application that may cause casualties in case of failure of GiantOhm's products.

All technical suggestions on product application provided by GiantOhm are provided free of charge. GiantOhm assumes no obligation and responsibility for adopting such technical suggestions and available results, and all risks of adopting such suggestions shall be borne by the buyer. All risks and responsibilities arising from the buyer's use of GiantOhm's products in combination with other materials or raw materials, or in any combination in its manufacturing process, shall be borne by the buyer, regardless of any oral or written technical instructions, suggestions or other requirements given by GiantOhm for the use of the products.

The information provided above is only to explain the product specifications. If the product is not changed, GiantOhm has all the rights to modify the above contents without prior notice, and the product change will be notified to the customer by ECN.

MR Series

Non-Magnetic Thick Film Chip Resistors

VERSION HISTORY

Version Date Change (entry) Description A 2023/02/08 - First version	Version	Date	Change Item(s)	Description
A 2023/02/08 - First version			Change Rem(s)	First assist
	A	2023/02/08	-	First version
		-		<u> </u>
		<u>.</u>		
				·
		-		· · · · · · · · · · · · · · · · · · ·
				·
		·	·	
		·	·	
				·
		·	·	
		-		
				·
				·